Schwann cell proliferation in vitro is under negative autocrine control

نویسندگان

  • D Muir
  • S Varon
  • M Manthorpe
چکیده

In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen-stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate control of axon defasciculation and myelination by laminin-2 and -8

Schwann cells form basal laminae (BLs) containing laminin-2 (Ln-2; heterotrimer alpha2beta1gamma1) and Ln-8 (alpha4beta1gamma1). Loss of Ln-2 in humans and mice carrying alpha2-chain mutations prevents developing Schwann cells from fully defasciculating axons, resulting in partial amyelination. The principal pathogenic mechanism is thought to derive from structural defects in Schwann cell BLs, ...

متن کامل

Stromelysin generates a fibronectin fragment that inhibits Schwann cell proliferation

Our previous report (Muir, D., S. Varon, and M. Manthorpe. 1990. J. Cell Biol. 109:2663-2672) described the isolation and partial characterization of a 55-kD antiproliferative protein found in Schwann cell (SC) and schwannoma cell line-conditioned media and we concluded that SC proliferation is under negative autocrine control. In the present study the 55-kD protein was found to possess metallo...

متن کامل

Melatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways

Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...

متن کامل

Transforming Growth Factor (TGF ) Mediates Schwann Cell Death In Vitro and In Vivo: Examination of c-Jun Activation, Interactions with Survival Signals, and the Relationship of TGF -Mediated Death to Schwann Cell Differentiation

In some situations, cell death in the nervous system is controlled by an interplay between survival factors and negative survival signals that actively induce apoptosis. The present work indicates that the survival of Schwann cells is regulated by such a dual mechanism involving the negative survival signal transforming growth factor (TGF ), a family of growth factors that is present in the Sch...

متن کامل

Transforming growth factor-beta 1 regulates axon/Schwann cell interactions

We have investigated the potential regulatory role of TGF-beta in the interactions of neurons and Schwann cells using an in vitro myelinating system. Purified populations of neurons and Schwann cells, grown alone or in coculture, secrete readily detectable levels of the three mammalian isoforms of TGF-beta; in each case, virtually all of the TGF-beta activity detected is latent. Expression of T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1990